Binding of imidazole to the heme of cytochrome c1 and inhibition of the bc1 complex from Rhodobacter sphaeroides: I. Equilibrium and modeling studies.

نویسندگان

  • Oleksandr Kokhan
  • Vladimir P Shinkarev
  • Colin A Wraight
چکیده

We have used imidazole (Im) and N-methylimidazole (MeIm) as probes of the heme-binding cavity of membrane-bound cytochrome (cyt) c(1) in detergent-solubilized bc(1) complex from Rhodobacter sphaeroides. Imidazole binding to cyt c(1) substantially lowers the midpoint potential of the heme and fully inhibits bc(1) complex activity. Temperature dependences showed that binding of Im (K(d) approximately 330 microM, 25 degrees C, pH 8) is enthalpically driven (DeltaH(0) = -56 kJ/mol, DeltaS(0) = -121 J/mol/K), whereas binding of MeIm is 30 times weaker (K(d) approximately 9.3 mM) and is entropically driven (DeltaH(0) = 47 kJ/mol, DeltaS(0)(o) = 197 J/mol/K). The large enthalpic and entropic contributions suggest significant structural and solvation changes in cyt c(1) triggered by ligand binding. Comparison of these results with those obtained previously for soluble cyts c and c(2) suggested that Im binding to cyt c(1) is assisted by formation of hydrogen bonds within the heme cleft. This was strongly supported by molecular dynamics simulations of Im adducts of cyts c, c(2), and c(1), which showed hydrogen bonds formed between the N(delta)H of Im and the cyt c(1) protein, or with a water molecule sequestered with the ligand in the heme cleft.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression and one-step purification of a fully active polyhistidine-tagged cytochrome bc1 complex from Rhodobacter sphaeroides.

The fbcB and fbcC genes encoding cytochromes b and c1 of the bc1 complex were extended with a segment to encode a polyhistidine tag linked to their C-terminal sequence allowing a one-step affinity purification of the complex. Constructions were made in vitro in a pUC-derived background using PCR amplification. The modified fbc operons were transferred to a pRK derivative plasmid, and this was u...

متن کامل

Plasmon waveguide resonance spectroscopic evidence for differential binding of oxidized and reduced Rhodobacter capsulatus cytochrome c2 to the cytochrome bc1 complex mediated by the conformation of the Rieske iron-sulfur protein.

The dissociation constants for the binding of Rhodobacter capsulatus cytochrome c2 and its K93P mutant to the cytochrome bc1 complex embedded in a phospholipid bilayer were measured by plasmon waveguide resonance spectroscopy in the presence and absence of the inhibitor stigmatellin. The reduced form of cytochrome c2 strongly binds to reduced cytochrome bc1 (Kd = 0.02 microM) but binds much mor...

متن کامل

Catalytically-relevant electron transfer between two hemes bL in the hybrid cytochrome bc1-like complex containing a fusion of Rhodobacter sphaeroides and capsulatus cytochromes b

To address mechanistic questions about the functioning of dimeric cytochrome bc1 new genetic approaches have recently been developed. They were specifically designed to enable construction of asymmetrically-mutated variants suitable for functional studies. One approach exploited a fusion of two cytochromes b that replaced the separate subunits in the dimer. The fusion protein, built from two co...

متن کامل

Identifying involvement of Lys251/Asp252 pair in electron transfer and associated proton transfer at the quinone reduction site of Rhodobacter capsulatus cytochrome bc1

Describing dynamics of proton transfers in proteins is challenging, but crucial for understanding processes which use them for biological functions. In cytochrome bc1, one of the key enzymes of respiration or photosynthesis, proton transfers engage in oxidation of quinol (QH2) and reduction of quinone (Q) taking place at two distinct catalytic sites. Here we evaluated by site-directed mutagenes...

متن کامل

Isolation and characterization of a two-subunit cytochrome b-c1 subcomplex from Rhodobacter capsulatus and reconstitution of its ubihydroquinone oxidation (Qo) site with purified Fe-S protein subunit.

The presence of a two-subunit cytochrome (cyt) b-c1 subcomplex in chromatophore membranes of Rhodobacter capsulatus mutants lacking the Rieske iron-sulfur (Fe-S) protein has been described previously [Davidson, E., Ohnishi, T., Tokito, M., and Daldal, F. (1992) Biochemistry 31, 3351-3358]. Here, this subcomplex was purified to homogeneity in large quantities, and its properties were characteriz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 285 29  شماره 

صفحات  -

تاریخ انتشار 2010